

## **Co-funded by** the European Union



# Cork CCUS CEF Pre-FEED Study

GATHERING, LIQUEFACTION, TEMPORARY STORAGE AND SHIPPING OF CAPTURED CO<sub>2</sub>

> Presented by: Gearóid Fitzgerald, Ervia

## **Project Background**



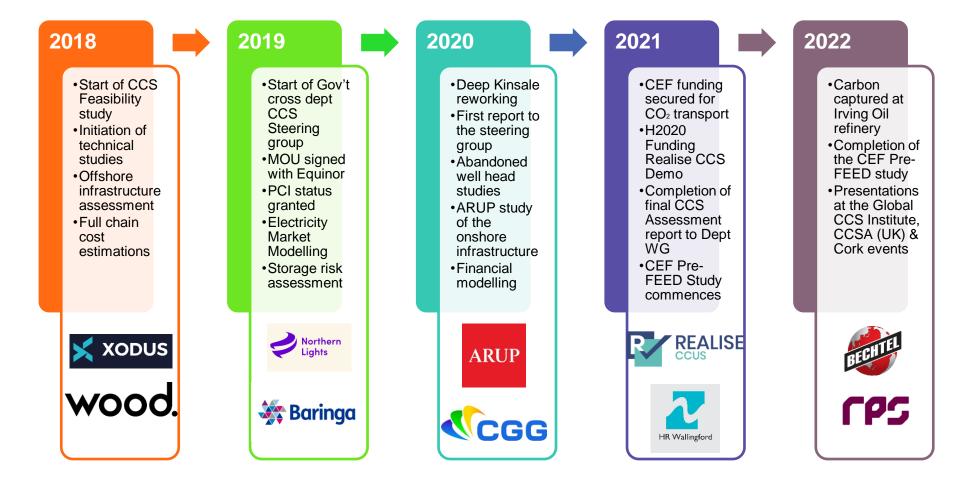
- Ireland's Climate Action Plan objectives
  - Reducing  $CO_2$  emissions by 50% by 2030
  - Achieving net zero CO<sub>2</sub> emissions by 2050
  - Potential role for Carbon Capture & Storage (CCS)
- Action 126: 'Examine... the feasibility of... Carbon Capture and Storage'
  - Emitter clusters identified in Cork and Dublin
  - Potential Carbon Sinks identified
    - Cork (former Kinsale Head Gas Field)
    - Norway (Northern Lights Project)

#### Carbon Capture and Storage

| Steps Necessary for Delivery                                                              | Timeline by<br>Quarter | Lead  | Other Key<br>Stakeholders       |
|-------------------------------------------------------------------------------------------|------------------------|-------|---------------------------------|
| Establish Steering Group                                                                  | Q2 2019                | DCCAE |                                 |
| Agree appropriate research investment by Ervia/Gas Networks<br>Ireland in CCS feasibility | Q3 2019                | DCCAE | DHPLG, CCS<br>Steering<br>Group |
| Monitor progress of Ervia proposal in Cork                                                | Q2 2020                | DCCAE |                                 |
| Draft necessary legislation and regulatory regime if CCS<br>research is positive          | Q3 2020                | DCCAE |                                 |



Action 126 Examine and oversee the feasibility of the utilisation of Carbon Capture and Storage in Ireland


| Steps Necessary for Delivery                                                                                                                                               | Proposed<br>Output                                                                                                                  | Timeline | Lead | Key<br>Stakeholders |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------|------|---------------------|
| Establish a framework for analysis<br>of the potential for CCS<br>deployment for Ireland including<br>assessment of the environmental,<br>technical, and financial factors | A framework for<br>analysis of CCS<br>potential for<br>Ireland,<br>including<br>feasibility in<br>electricity and<br>cement sectors | Q4 2022  | DECC | EPA, SEAI,<br>DETE  |

Climate action plan 2019

#### Climate action plan 2021

### **CCS Feasibility Study**





## 2021 CCS Feasibility Study- Key Conclusions

# ervia

#### Environmental - Modelling

- 2050 climate targets need CO<sub>2</sub> Removal
- Potential to reduce Ireland's emissions by 6 to 16.6 MtCO<sub>2</sub> per annum
- Monitoring and assessment of the CO<sub>2</sub> to ensure permanent geological storage is the responsibility of the host country where the store is located
- The export of CO<sub>2</sub> is a viable option for Ireland to develop CCS

#### Technical & Financial Feasibility

- Capture (post- and precombustion), transport (by pipeline and ship) and storage of CO<sub>2</sub> (in saline aquifers) commercially deployed
- Existing ISO standards & guidance documents,
- Stores available to accept  $CO_2$  in the mid 2020's
- Current CCS developers believe that the risks could all be adequately mitigated
- On enhanced LCOE basis CCS is viable
- Abatement costs are comparable to other decarbonisation options

#### Regulation – IE/EU

- A framework for CCS in Ireland was developed
- Export of CO<sub>2</sub> avoids longterm liability for the State with the export storage option.
- There have been significant CCS developments at Member State level (BE, DK, NL, FR,PL,SE, GE & GR)
- Norway, the UK and Iceland have all stated that they will be available to import CO<sub>2</sub> from European countries.

#### **Pre-FEED Study Objectives**



#### **Mission Statement**

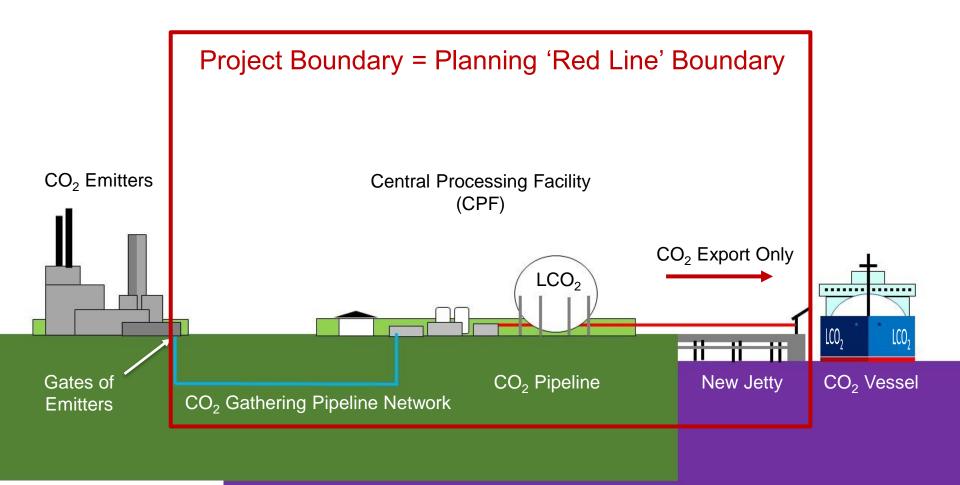
Develop a detailed costing of CO<sub>2</sub> transportation infrastructure to inform CCS policy

- CO<sub>2</sub> gathering network
- Central Processing Facility including liquefaction, temporary storage, regasification
- Ship loading facilities for CO<sub>2</sub> export and import

#### Cork (1.25MMtpa CO<sub>2</sub>)

- 1. BGE Whitegate Power Station
- 2. Irving Oil Whitegate Refinery
- 3. ESB Aghada Power Station

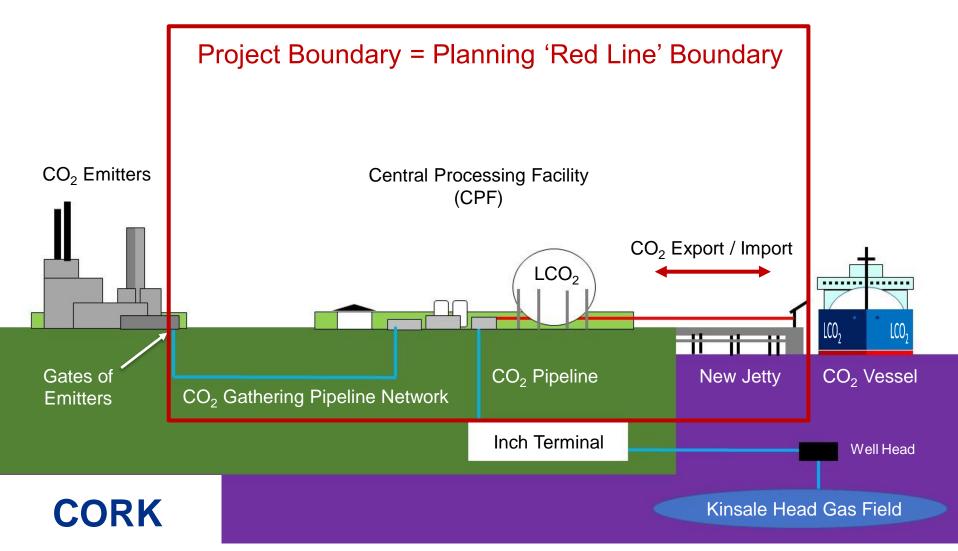
#### Dublin (1.75MMtpa CO<sub>2</sub>)


- 1. ESB Dublin Bay Power Station
- 2. Covanta Dublin Waste to Energy (WTE) Plant
- 3. ESB Poolbeg Power Station

#### ~ 5% of Irish CO<sub>2</sub> Emissions

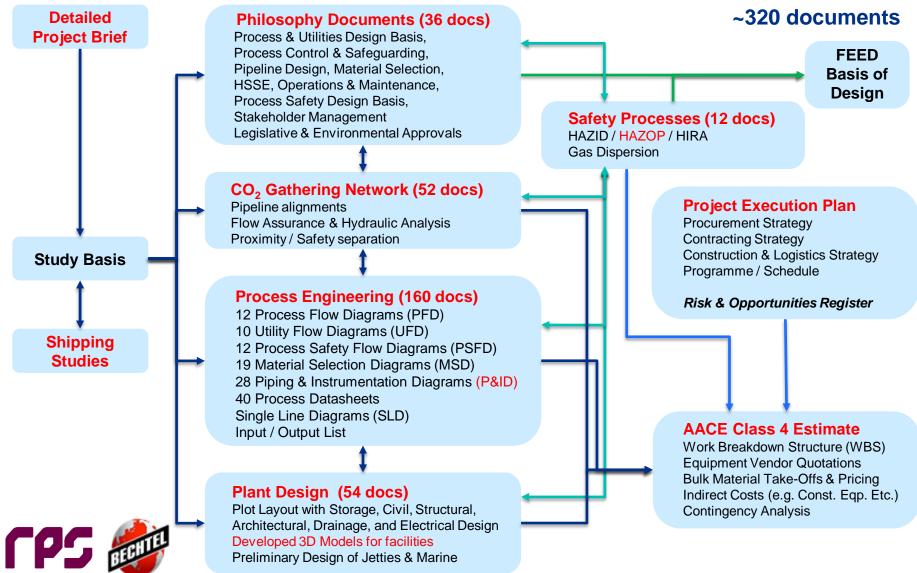
- Process Engineering PFD, MSD, P&ID, Datasheets, Equipment list, etc.
- Develop safety processes (HAZID, HAZOP, HIRA, Gas Dispersion studies)
- Produce a well defined design basis for FEED
- AACE Class 4 Cost Estimate for CAPEX
- OPEX Estimate

### **Carbon Transportation and Storage**



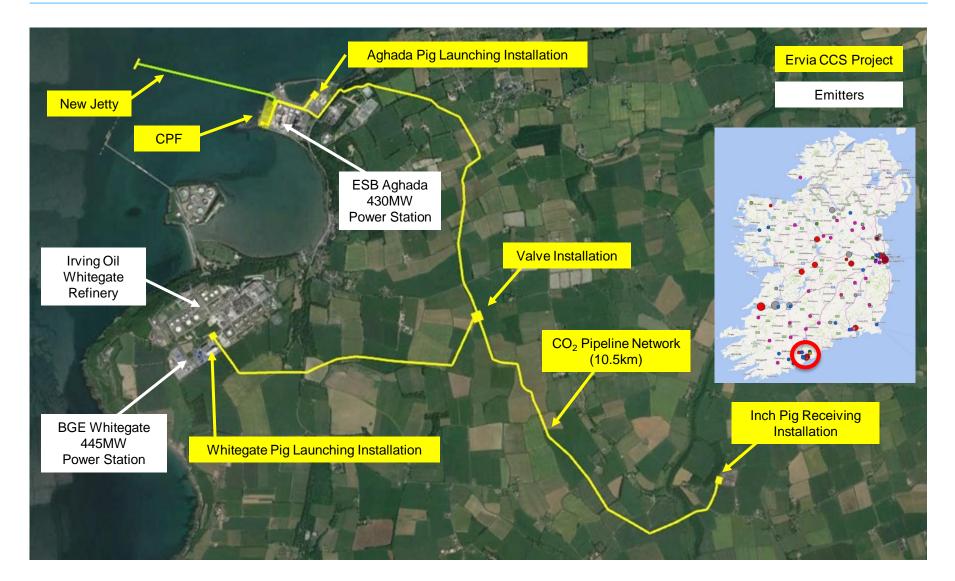



#### DUBLIN


### **Carbon Transportation and Storage**

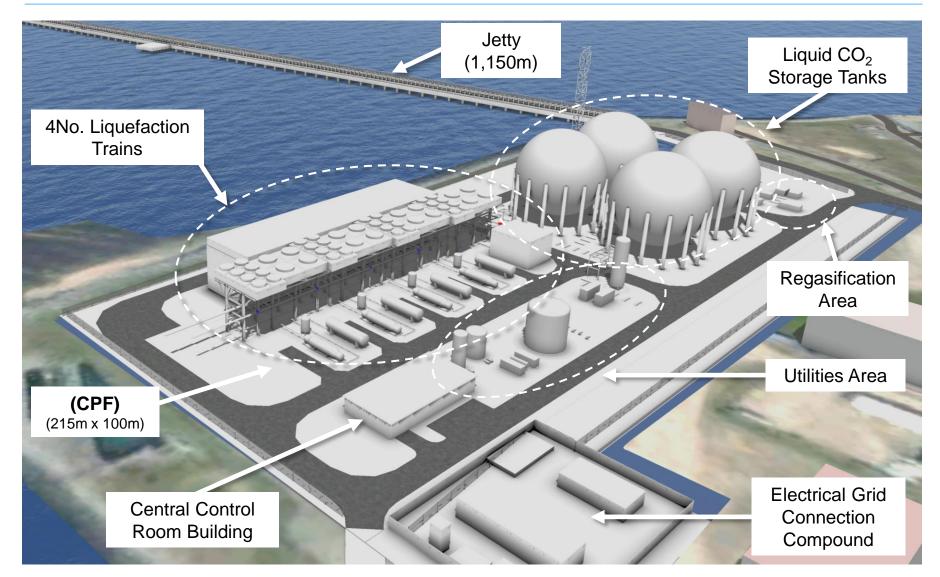





### **Pre-FEED Methodology**

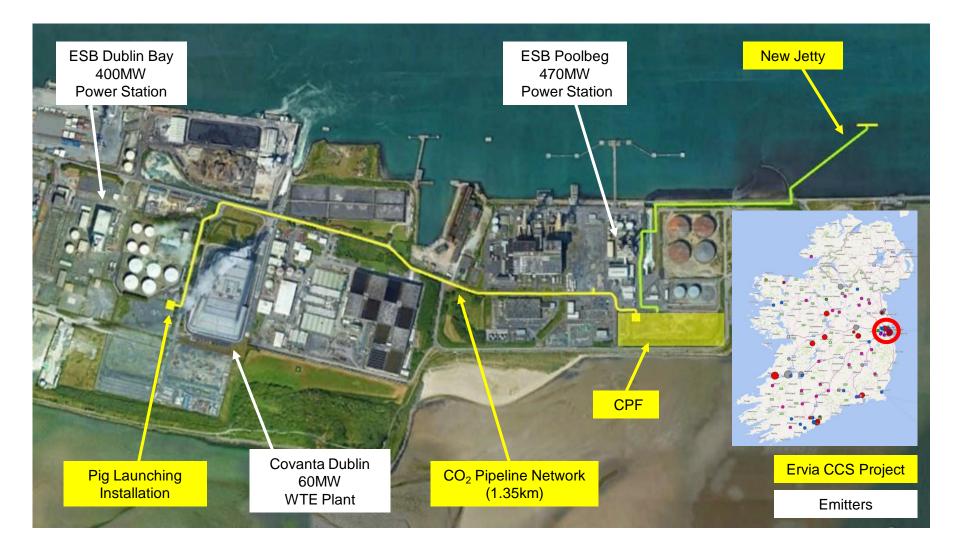
# ervia




# **Cork CO<sub>2</sub> Gathering Network**

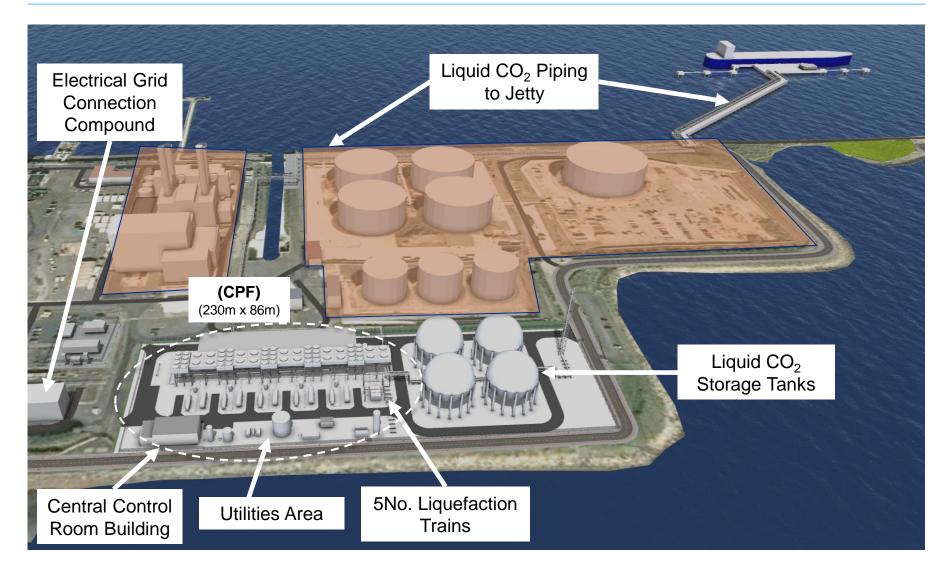





## **Central Processing Facility – Cork**






#### **Dublin CO<sub>2</sub> Gathering Network**





#### **Potential Plant Location – Dublin**

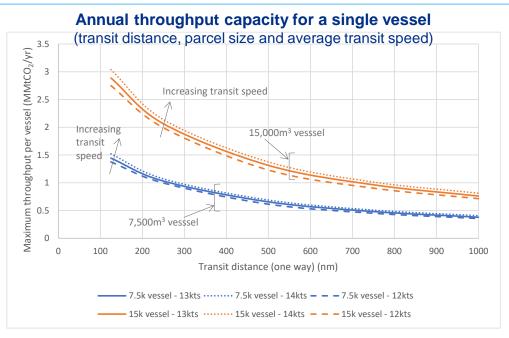


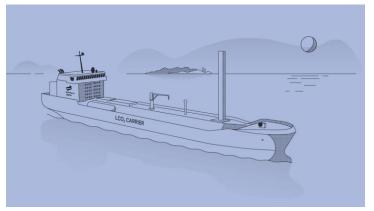


# **CO<sub>2</sub> Shipping Study**



#### **CO<sub>2</sub> Conditions**


- Medium Pressure conditions (14bar to 20bar / -30°C to -19.5°C)
- Northern Lights Project Specification
- Compatible with LPG carriers


#### **Vessel size**

- 7,500m<sup>3</sup> x 4No. Vessels per facility
- Voyages per year:
  - Cork: 152 (900nm to Kollsnes)
  - Dublin: 212 (750nm to Kollsnes)
- Determines storage capacity requirements:
  - Cork: Vessel + 3 days production = 26,050m<sup>3</sup>
  - Dublin: Vessel + 3 days production = 29,700m<sup>3</sup>
- Future consideration: 15,000m<sup>3</sup> vessels (2 per facility)

#### **Port Locations**

Cork and Dublin suitable for envisaged vessel sizes





Northern Lights CO<sub>2</sub> Vessel (7,500m<sup>3</sup>)



# **CO<sub>2</sub> Temporary Storage**





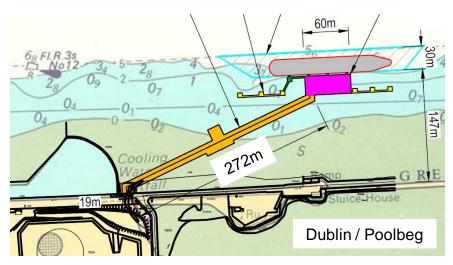
#### **Storage Options**

- Spheres
  - Larger capacity : 4 Spheres equated to 53 Bullets
  - More economical as storage needs increases, reduces footprint
  - Sphere option reduces piping, valving, and simplifies control system
  - Sphere option reduces risk of leaks and/or equipment failure
- Horizontal Vessels / Vertical Vessels (Bullets)
  - Economical (shop fabricated) suitable for smaller volumes
  - Size limitations driven by economics (i.e. steel thickness)



### **Jetty Design**

• New Jetties required:


Cork – Whitegate oil jetty cannot accommodate CCS project Dublin – Existing jetties will be removed for 3FM Project. New oil berth for NORA planned for Poolbeg

- Safe vessel access at all stages of tide without obstructing other marine traffic
- Dredge to -10m Chart Datum
- Jetty Lengths:

Cork: Approximately 1,150m Dublin: Approximately 280m

- Design loading for 15,000m<sup>3</sup> vessels
- Steel piled construction with reinforced concrete decks







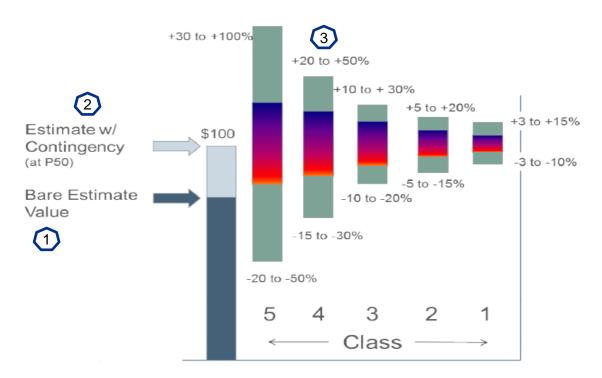
#### **Indicative Project Schedule**



| Ting a line a                                         | Year 1 |      | Year 1 Year 1 |      |      | Year 2 Year 3 |      |       | Year 4 |     |       | Year 5 |     |      |      |    | Year 6 |      |     |    | Year 7 |    |    |     |     |      |       |
|-------------------------------------------------------|--------|------|---------------|------|------|---------------|------|-------|--------|-----|-------|--------|-----|------|------|----|--------|------|-----|----|--------|----|----|-----|-----|------|-------|
| Timeline                                              | Q1     | Q2   | Q3            | Q4   | Q1   | Q2            | Q3   | Q4    | Q1     | Q2  | Q3    | Q4     | Q1  | Q2   | Q3   | Q4 | Q1     | Q2   | Q3  | Q4 | Q1     | Q2 | Q3 | Q4  | Q1  | Q2   | Q3 Q4 |
| Activity                                              |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Project Implementation Phase                          |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Appoint Technical & Environmental Adviser             |        |      | -             |      |      |               |      |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Environmental Surveys                                 |        |      |               |      |      |               |      |       |        |     |       | 2 ує   | ars | ;    |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Prepare Statutory Applications including EIAR         |        |      |               |      |      |               |      | -     |        |     |       |        |     | 1 ye | ear  |    |        |      |     |    |        |    |    |     |     |      |       |
| Submit Statutory Applications                         |        |      |               |      |      |               |      |       |        |     |       |        | V   |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Statutory Applications Processes                      |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    |        | 1 ye | ear |    |        |    |    |     |     |      |       |
| Planning Approvals in place                           |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    | ▼      |      |     |    |        |    |    |     |     |      |       |
| Procurement of FEED Consultant                        |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Government Spending Code Approval                     |        |      |               |      |      | 3             | 3 mc | onthe | 3      |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| FEED                                                  |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| EPC Tender Market Sounding , PQQ and Tender Documents |        |      | -             | -    |      |               |      |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Issue EPC Tender                                      |        |      |               |      |      |               |      | 7     |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| EPC Contractor Tender & Evaluation                    |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Government Spending Code Approval                     |        |      |               |      |      |               |      |       |        |     |       |        | 61  | mor  | nths |    |        |      |     |    |        |    |    |     |     |      |       |
| EPC Phase                                             |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      | -     |
| Appoint EPC Contractor                                |        |      |               |      |      |               |      |       |        |     |       | V      |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Detailed Design                                       |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Procurement & Delivery of Materials                   | ĸ      | ev l | Proc          | nran | nme  | Ris           | kΔ   | reas  |        |     |       |        | -   |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Construction Start                                    |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    | V      |      |     |    |        |    |    |     |     |      |       |
| Construction                                          | G      | iove | ernm          | nent | Sp   | endi          | ng ( | Code  | e ap   | pro | ovals | s      |     |      |      |    |        |      |     |    |        |    |    |     | - 2 | 27 m | onths |
| ESB Grid Connection                                   | S      | tatu | tory          | Pla  | anni | ng F          | Proc | esse  | es     |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Commissioning                                         | M      | 1aio | r ea          | uipr | nen  | t pro         | ocur | eme   | ent    |     |       |        |     |      |      |    |        |      |     |    |        | 9  | mo | nth | s 💻 |      | -     |
| Hand Over                                             |        |      |               | Sipi |      | n pr          | Joan |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      | ▼     |
| Operation Phase                                       |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |
| Start of Operations                                   |        |      |               |      |      |               |      |       |        |     |       |        |     |      |      |    |        |      |     |    |        |    |    |     |     |      |       |

#### **Cost Estimates – CAPEX Methodology**




AACE Class 4 estimate was developed considering the following elements:

- Vendor pricing for mechanical equipment based on process data sheets
- Material Take-Off (MTO) quantities based on conceptual 3D model
- Reference to recent historical and local pricing for bulk materials and labour
- EPC costs with consideration of:
  - Traffic & logistics
  - Temporary construction facilities
  - Professional Services (i.e. Engineering, Procurement and Project Controls during EPC)
  - Construction services and equipment (tools etc.)
  - Commissioning and start-up costs
- Other Costs (Contingencies, spare parts etc.)
- CAPEX exclusions are; abnormal subsurface conditions, unexpected underground demolition, remediation of contaminated soils, cost of electrical grid connections and owner's costs (e.g. cost of land purchase, permitting costs, environmental studies, environmental impact assessments and financing costs etc.).
- Current global pricing volatility and global supply chain disruptions has meant that future escalation cannot be priced at this time and is also excluded.

### AACE Class 4 Cost Estimate Accuracy



| Key Equipment Costs                                     | Direct Costs                                                                                                                                      | Indirect Costs                                                                                                                                | Other Project Costs                                                                                        |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Compressors<br>Pumps<br>Spheres<br>Tanks<br>Air coolers | Bulk materials<br>( <i>Steel, Pipe, etc.</i> )<br>Installation costs<br>( <i>Labour, scaffolding, insulation, painting</i> )<br>Subcontract costs | Temporary Facilities<br>Construction Equipment,<br>Tools & Supplies<br>Field Engineering<br>Start-up labour & material<br>Traffic & Logistics | Professional services<br>(Engineering, Procurement, Project<br>Controls)<br>Warranty<br>Fee<br>Contingency |



#### **AACE Estimate Development**

- 1. The Bare Estimate Value must fully consider the items listed in the above table.
- 2. 20% contingency has been used for this project based on a project contingency assessment.
- The +/- value shown represents the typical percentage variation of actual costs from the cost estimate after the application of contingency for each Class of AACE estimate.

# Cost Estimates – Location Summary Comparison **ervia**

| Description                                 | Cork                              | Dublin                            |
|---------------------------------------------|-----------------------------------|-----------------------------------|
| Plant Capacity                              | 1.25MMtpa                         | 1.75MMtpa                         |
| No. Liquefaction Trains                     | 4                                 | 5                                 |
| Minimum Flow Rate                           | 0.125 MMtpa                       | 0.25 MMtpa                        |
| Regasification                              | 0.5 MMtpa                         | No                                |
| Length of CO <sub>2</sub> Gathering Network | 10.5km                            | 1.35km                            |
| No. Pipeline Installations                  | 4                                 | 1                                 |
| Liquid CO <sub>2</sub> Storage Capacity     | 3 spheres<br>26,050m <sup>3</sup> | 3 spheres<br>29,700m <sup>3</sup> |
| Length of Jetty                             | 1,150m                            | 280m                              |
|                                             |                                   |                                   |
| CAPEX                                       | €510 m                            | €450 m                            |
| OPEX*                                       | €40 m/a                           | €41 m/a                           |

\* 50% of OPEX cost is from electricity consumption, this is currently a highly unstable variable

#### **Class 4 Cost Estimate – Cork**



|                                  |                       |                   | CO₂ Storage<br>€118m   |                               |
|----------------------------------|-----------------------|-------------------|------------------------|-------------------------------|
| Jetty &<br>Loading Arms<br>€140m | Liquefaction<br>€124m |                   | Pipeline<br>€30m       | Buildings<br>€14m             |
|                                  |                       | Utilities<br>€35m |                        | Roads,<br>Fences etc.<br>€13m |
|                                  |                       |                   | Regasification<br>€23m | Vents<br>€12m                 |

#### Total CAPEX : €510 m

#### **Class 4 Cost Estimate – Dublin**





#### Total CAPEX : €450 m



Class 5 Estimated Costs for Flowrate Sensitivity:

| Scenario                  | Cork<br>CAPEX   | Dublin<br>CAPEX |
|---------------------------|-----------------|-----------------|
| Base Case                 | €510 m          | €450 m          |
| Increase Flowrate by 50%  | €687m<br>(+35%) | €630m<br>(+40%) |
| Increase Flowrate by 100% | €792m<br>(+56%) | €736m<br>(+64%) |
| Decrease Flow rate by 50% | €428m<br>(-16%) | €365m<br>(-19%) |

#### **Pre-FEED Study – Key Findings**



- The comprehensive project scope led to greater detail and cost accuracy:
  - Detailed P&IDs were more developed than for a typical Pre-FEED
  - A preliminary HAZOP at this Pre-FEED stage pushed the definition of the project
  - Shipping studies were essential to optimising overall project configuration
  - Modelling of CO<sub>2</sub> gathering network resulted in optimised configuration for Cork
  - Vendor pricing was obtained for all major equipment before February 2022
- Other key factors which led to greater accuracy of Class 4 cost estimate included:
  - EPC contractor expertise and access to vendors
  - Local knowledge and expertise of similar infrastructure in Ireland
  - Development of 3D model for material quantities etc.
- Value engineering opportunities identified included:
  - Further consideration of vessel sizes and onshore storage requirements
  - Potential for shared marine facilities

#### **Pre-FEED Study – Conclusions**



- The study has resulted in a detailed understanding of the transportation & storage aspects of CCS and the associated costs in Ireland
- The AACE Class 4 cost estimates for Cork and Dublin were developed rigorously and accurately reflect (normal) 'real world' conditions
- This infrastructure is technically feasible for both locations
- If the projects were to be progressed, development would take at least 7 years
- If progressed, stakeholder engagement and statutory approvals will be critical to timely project delivery
- This Pre-FEED study will inform CCS policy
- The legislative context for CCS in Ireland must be developed
- Many aspects of this study are transferrable to potential CCS projects

#### Go raibh maith agaibh!







Ervia CCS Project - Cork

Ervia CCS Project - Dublin



# **Co-funded by the European Union**

**Thank You!**